Bubble sort
Popular method but not efficient. It works by repeatedly swapping adjacent elements that are out of order.

Bubblesort (A)

```
for \(i=1\) to A.length -1
        for \(j=\) A. length downto \(i+1\)
            if \(A[j]<A[j-1]\)
                exchange \(A[j]\) with \(A[j-1]\)
```

If input is array A, then output will He denoted by A^{\prime} with elements satisfying properties:

$$
\begin{equation*}
A^{\prime}[1] \leq A^{\prime}[2] \leq \ldots \leq A^{\prime}[n] \tag{1}
\end{equation*}
$$

To show that bubblesort works correctly we weed to establish (1) and also show that A^{\prime} is a permutation of elements from A.

Loop invariant \#1 (lines 2-4). Cot the start of each iteration of the for loop in lines 2-4,
$A[j]=\min \{A[k]: j \leq k \leq n\}$ and the oubarray $A[j . . n]$ is a permutation of elemouts that were originally in $A[j . . n]$ at the time when loop started.

Initialization $j=n$, subarray $A[j: n]$ consists only of one element $A[n]$. The loop invariant holds trivially.

Maintenance. Fix index oi By assumption, $A[j]$ is min element in $A[j \ldots n]$ and $A[j . . n]$ is a permutation of elements at due sine loop started. Lines 3 and 4 exchange values of $A[j]$ and $A[j-1]$ if $\left.A C_{j}\right]$ is matter than $A[j-1]$. If $A[j]$ was the min elernent in $A\left[_{j} . . n\right]$, then since we lave only one possible exchange, $A[j-1]$ will feme the smallest in $A[j-1 . . n]$. Since $A[j \ldots n]$ is a permutation of elements at the start of the loop, by possibly exchausing $A[j]$ with $A[j-1]$, we get $A[j-1 . . n]$ alto being a permutation of
elements from $A[j-1, n]$ present at the start the loop.

Termination. At the end of the for loop, $j=i \Rightarrow A[i]$ is the smallest element is A[i..n] and $A[i . . n]$ is a permutation of elements from $A[i . n n]$ present at the start of the loos.

Loop invariant \#2 for lines 1-4 at tue start of each iteration in for loop of lines $1-4$, the subarray $A[1 . . i-1]$ consists of $i-1$ smallest elements that were originally present in $A[1 \ldots n]$, is sorted order, and $A[i . . n]$ will have $n-i+1$ remaining elements of $A[1 \ldots n]$.

Initialization $i=1 \Rightarrow A[1.1-1]$ is empty array. Trivially satisfied.
maintenance. Fix i. we assumes that $A[1 .[-1]$ coufaius i-1 smallest elements originally present (is anted order)
is $A[1 . n n]$."We showed frat loop invariant \#1 When it finishes hos $j=i$ and $\left.A C_{i}\right]$ is the smallest element from $A[i . . n]$. Hence, $A[1 . i]$ will contain i smallest elements originally present in $A[1 . . n]$. Also, from loop invariant \#1 with $j=i$, $A[i . . n]$ is a permutation of elements, hence, $A[i+1 . n]$ is also a permentasisy, and $A[i+1 . . n]$ contains the rest $n-1$ if element.

Termination. The for loop of lines 1-4 terminates when $i=n$, so that $i-1=n-1$. By tue statement of tue loop invariant, $A[1 \ldots i-1]$ is tue subarray $A[1 . . n-1]$, and it consists of the $n-1$ smallest values originally is $A[1 . . n]$, is sorted order. The remaining elencut must be tue larger value ir A[1..n], and it is A[n? Therefore, tue entire array $A[1 . . n]$ is sorted.

Let's analyze the running tine for the bubblesort algorithm.

Bubblesort (A)

$$
n-(i+1)+1=n-i
$$

for $i=1$ to A.length -1
for $j=$ A. length downto $i+1 \quad n . . i+1$ if $A[j]<A[j-1]$ exchange $A[j]$ with $A[j-1]$

The running tine depends on the number of iteratisus of the for 100 p of lives 2-4. For a given value of i, this loop makes $n-i$ iterations, and, 'takes on tue values $1,2, \ldots, n-1$. The total number of iteration, therefore, is

$$
\begin{aligned}
& \text { erefore, is } \\
& \sum_{i=1}^{n-1}(n-i)=\sum_{i=1}^{n-1} n-\sum_{i=1}^{n-1} i=n(n-1)-\frac{n(n-1)}{2}= \\
& =\frac{n(n-1)}{2}=\frac{n^{2}}{2}-\frac{n}{2} \sim \frac{n^{2}}{2} \text { for large } n .
\end{aligned}
$$

Thus, tue running tine of bubblesort is $\theta\left(n^{2}\right)$ is all cases. The worst-case running
time is the sow ne as that of cistertisu fort.

Horner's Rule
Consider the $n^{\text {th }}$ degree polynomial

$$
P(x)=\sum_{k=0}^{n} a_{n} x^{k}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n} a_{n} \neq 0
$$

Given coefficients $a_{0}, a_{1}, \ldots, a_{n}$ and x_{1}, evaluate $P(x)$.

Naive evaluation: compute all powers of x, multiply by coefficients and add.

$$
\begin{aligned}
& P(x)=a_{0}+a_{1 \text { muller }}^{a_{1} \cdot x+a_{2} \cdot x \cdot x+a_{3} \cdot x \cdot x \cdot x+\ldots} \sum_{3 \text { malt }} \\
& \ldots+a_{n} \cdot \underbrace{x \cdot x \ldots x}_{n \text { tines }} \\
& n \text { mule } \\
& \text { \# additions }=n \\
& \text { \# multiplication }=1+\alpha+\ldots+n=\frac{n(n+1)}{2}
\end{aligned}
$$

a better way to compute powers of x, ie. x y, is to use x^{n-1} :

$$
\begin{gathered}
x^{n}=x^{n-1} \cdot x \\
P(x)=a_{0}+a_{1} \cdot x+a_{2} \cdot x \cdot x+a_{3} \cdot \underbrace{x \cdot x^{2}}_{x^{3}}+a_{y} \cdot x \cdot x^{3}+\ldots \\
\ldots x a_{n} \cdot x \cdot x^{n-1} \\
\# \text { add }=n \\
\# \text { mult }=1+\underbrace{2+2+\ldots+2}_{n-1 \text { times }}=2(n-1)+1=2 n-1
\end{gathered}
$$

Horner's rule / Nested multiblication

$$
\begin{aligned}
& P_{3}(x)=a_{0}+a_{1} x+a_{2} x^{2}=a_{0}+x\left(a_{1}+a_{2} \cdot x\right) \div 2 \text { mult } \\
& P_{n}(x)=a_{0}+x\left(a_{1}+x\left(a_{2}+\ldots+x\left(a_{n-1}+a_{n} \cdot x\right) \ldots\right)\right) \\
& \text { n muet }
\end{aligned}
$$

$$
\begin{aligned}
& y=0 \\
& \text { for } i=n \text { downto } 0 \\
& \quad y=a_{i}+x \cdot y
\end{aligned}
$$

\#mult = n

Inversions
Let $A[1 . . n]$ be an array of n distinct numbers. If $i<j$ and $A[i]>A[j]$, then the pair (i,j) is called an inversion of A.
(a) List the five inversions of the array

$$
\begin{aligned}
& \langle 2,3,8,6,1\rangle . \\
& A=\left\langle 2,3,3,8^{3}, 6,1^{4}\right\rangle
\end{aligned}
$$

The inversions are $(1,5),(2,5),(3, y),(3,5),(4,5)$. (Remember that inversions are pacified by indices rather than by the values in the array.)
(b) What array with elements from the set $\{1,2, \ldots, n\}$ has the most inversion?

The array with elements from $\{1,2, \ldots, n\}$ with the most inversions is $\langle n, n-1, n-2, \ldots, 2,1\rangle$. For all $1 \leqslant i<j \leq n$, there is an inversion $(i j j)$.

The number of such inversions is

$$
\binom{n}{2}=\frac{n!}{2!(n-2)!}=\frac{(n-2)!(n-1) n}{2!(n-2)!}=\frac{n(n-1)}{2}
$$

(c) What is the relationship between the running time of insertion sort and the number of inversions is tue input array?

Recall the insertion sort:
(a)

(d)

(b)

(e)

(c)

(f) | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 2 | 3 | 4 | 5 | 6 |

Insertion-Sort (A)

```
for \(j=2\) to \(A\).length
        \(k e y=A[j]\)
        // Insert \(A[j]\) into the sorted sequence \(A[1 \ldots j-1]\).
        \(i=j-1\)
        while \(i>0\) and \(A[i]>k e y\)
        \(A[i+1]=A[i]\)
        \(i=i-1\)
        \(A[i+1]=k e y\)
```

Suppose that tue array A starts out with an inversion (k, j). Then $k<j$ and $A[k]>A[j]$. At the time that tue outer for loop of lines 1-8 sets hey $=A[j]$, the value that started in $A[k]$ is still somewhere to the left of $A[j]$. That is, it's in $A[i]$, where $1 \leq i<j$, and so the inversion has become (i, j). Some iteration of the while loop of lines $5-7$ moves $A[i]$ one position to the right. Line 8 will eventually drop bey to the left of this element, thus eliminating tue inversion. Because line 5 moves only elements that are greater human bey, it moves only elements trot correspond to inversions. In other words, each iteration of the while loop of lines 5-7 corresponds to the elimination of sue inversion.

