
 

Bubblesort

Popular method but not efficient It works

by repeatedly swapping adjacent elements

that are out of order

If input is array A then output will

be denoted by A with elements satisfying

properties

A Ce E A 2 I L A'In i

To show that bubble sort works correctly

we need to establish a and also show that A

is a permutation of elements
from A

Loop invariant 1 lines 2 4 At the start

of each iteration of the fr loop in lines 2 4



ACj min Ack j then and the tub array

Alj n is a permutation of elements
that

were originally in ACj n at the time when

loop started

Initialization j n tub array A Cj n

consists only of one element Acn The loop

invariant holds trivially

Maintenance Fix index j By assumption

Acj is min element in ACj n and ACj n

is a permutation of elements at the time

loop started Lines 3 and 4 exchange

values of ACj and AG 1 if Acj is smaller

than Alj D If Acp was the min element

in ACj in then since we have only one

possible exchange ACj13 will become the

smallest in Alj l in Since A Cj n is a

permutation of elements at the start of the

loop by possibly exchanging Acp
with Acj i

we get Ali 1 n also being a permutation of



elements from Alj l n present at the start

of the loop

Termination At the end of the for loop

ji Ali is the smallest element in Ali D

and Ali n is a permutation of elements

from Ali n present at the start of the loop

Loop invariant 2 for lines 1 4

At the start of each iteration in for loop

of lines 1 4 the tubarray
All i e consists

of i s smallest elements that were originally

present in All n is sorted order and

Ali n will have n its remaining
elements

of All n

Initialization
it All It is empty

array
Trivially satisfied

Maintenance
Fix i We assume that Ace i i

contains i i smallest elements originally present
in sorted order



in sorted

in All n We showed that loop is variant e

when it finishes has jai and Ali is the

smallest element from Ali n Hence Ace i

will contain i smallest elements originally
present in All n Also from loop invariant

1 with j i Ali n is a permutation of

elements hence A Lite n is also a permutation

and Alita u contains the rest n i of

elements

Termination The for loop of lines 1 4

terminates when i n to that i i n e

By the statement of the loop invariant

All i e is the tub array
All n i and

it consists of the
n t smallest values

originally
in Ace n is sorted order

The remaining
element must be the

largest
value is Ace 43 and it is Acn

Therefore the entire array All n is

sorted



Let's analyze the running
time for the

bubble sort algorithm
N it ti h i

n it

The running time depends on the number

of iterations of the fir loop of lives 2 4

For a given value of i this loop makes

n i iterations and i takes on the values

1,2 n e The total number of iterations

therefore is

É.cn is Ein EI non D ME

nh n
I E for large n

Thus the running time of bubble sort is

n in all cases The worst case running



time is the tone as that of assertion

tort

Horner's Rule

Consider the nth degree polynomial

PIX Egan Xk AotaextazX't aux auto

Given coefficients
Ao Ge an and X evaluate

P x

Naive evaluation compute all powers of x

multiply by coefficients and add

PIX Ao t ai Xt 92 X Xt 93 X X X t

I meet 2 melt 3 malt

tailings
n malt

additions n

multiplications 1 24 th 4421



A better way
to compute powers of X ie X

is to use x

X X
l
X

Plx aoxai xtaz.x
xtaz.gg

tay.x x3t

an X XM

add n

A meet 1
2t2ng2_

2 In c 1 2 n e

Horner's rule Nested multiplication

Pz x Aot A X 92
2 Aot X Art 92 x 2 malt

3 malt

Prix dot x Cart x art x an it an X

n melt

meet n



Inversions

Let All n be an array of
a distinct

members
If i j and Ali ACj then

the pair i j is called an invention of A

a List the five inversions of the array

2,3 8 6 17

A 52,38 It

The inversions are lis 2,5 3,7 3,5 as

remember that inventions
are specified by

indices rather than by
the values is the array

b What array
with elements from the set

1,2 n has the most inversions

The array
with elements from e 2 ng

with the most inventions is Chin i n 2 2,17

For all Isi j en there is an inversion i j



The number of such inversions is

a In

C What is the relationship
between the

running time of insertion
tort and the

number of inversions is the input array

Recall the insertion tort



suppose that the array
A starts out with

an invention leg Then kg and ACK AG

At the time that the outer fir loop of

lines 1 8 sets hey Ali the value that

started in ACT is still somewhere to the

left of ACj That is it's in Ali where

I Eilj and to the inversion has become

i j
Some iteration of the white loop

of lines 5 7 moves Ali one position

to the right Line 8 will eventually drop

key
to the left of this element thus

eliminating
the inversion Because lines

moves only elements that are greater than

hey it moves only elements that

correspond to
inversions In other words

each iteration of the
while loop of lines

5 7 corresponds
to the elimination of ore

inversion


